Unusual four-bond secondary H/D isotope effect supports a short-strong hydrogen bond between phospholipase A2 and a transition state analogue inhibitor.

نویسندگان

  • Chunhua Yuan
  • Shengjiang Tu
  • Michael H Gelb
  • Ming-Daw Tsai
چکیده

A prominent secondary four-bond hydrogen/deuterium isotope effect was observed from proton NMR at the active site histidine imidazole ring of bovine pancreatic sPLA(2) in the presence of a phosphonate transition state analogue. The cross-modulation of H(epsilon2)/H48 and H(delta1)/H48 resonances was confirmed by line shape simulation that follows the McConnell equation with fractionation factors incorporated to account for the change in the signal magnitude as well as the resonance line shape at various H(2)O/D(2)O solvent mixtures. While the downfield shift of each individual proton upon deuteration on the opposite site can be attributed to the proton-relay system of the H48-D99 catalytic dyad in sPLA(2), the observation that H(delta1)/H48 induces a 3-fold larger H/D secondary isotope effect ( approximately 0.15 ppm) on H(epsilon2)/H48 than vice versa ( approximately 0.05 ppm) is interpreted as additional spectroscopic evidence for the previously proposed short-strong hydrogen bond formed between the donor N(delta1)/H48 and a nonbridging phosphonate oxygen atom of the transition state analogue. These results provide additional details for the catalytic mechanism of sPLA(2) and demonstrate that the intrinsic H/D secondary isotope effect is a useful tool to probe hydrogen bond strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A low-barrier hydrogen bond between histidine of secreted phospholipase A2 and a transition state analog inhibitor.

This work describes in-depth NMR characterization of a unique low-barrier hydrogen bond (LBHB) between an active site residue from the enzyme and a bound inhibitor: the complex between secreted phospholipase A(2) (sPLA(2), from bee venom and bovine pancreas) and a transition-state analog inhibitor HK32. A downfield proton NMR resonance, at 17-18 ppm, was observed in the complex but not in the f...

متن کامل

Critical role of a hydrogen bond in the interaction of phospholipase A2 with transition-state and substrate analogues.

The inhibition of phospholipase A2 by an amide substrate analogue, 1-hexadecylthio-2-hexadecanoyl-amino-1,2-dideoxy-sn-glycero-3-phos phocholine, and a phosphonate transition-state analogue, 1-hexadecylthio-1-deoxy-2-hexadecylphosphono-sn-glycero-3-ph osphocholine, is dramatically influenced by pH. However, these two inhibitors show opposite pH dependencies. The amide analogue acts more potentl...

متن کامل

H/D isotope effects in hydrogen bonded systems.

An extremely strong H/D isotope effect observed in hydrogen bonded A-H…B systems is connected with a reach diversity of the potential shape for the proton/deuteron motion. It is connected with the anharmonicity of the proton/deuteron vibrations and of the tunneling effect, particularly in cases of short bridges with low barrier for protonic and deuteronic jumping. Six extreme shapes of the prot...

متن کامل

Hydrogen-bond-dynamics-based switching of conductivity and magnetism: a phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal.

A hydrogen bond (H-bond) is one of the most fundamental and important noncovalent interactions in chemistry, biology, physics, and all other molecular sciences. Especially, the dynamics of a proton or a hydrogen atom in the H-bond has attracted increasing attention, because it plays a crucial role in (bio)chemical reactions and some physical properties, such as dielectricity and proton conducti...

متن کامل

Investigation of Substituent Effects on the Strength of Hydrogen Bond in the Guanine: Cytosine Base Pairs: A Theoretical Study

In the present work, the substituent effect on the strength of H-bonds in the guanine – cytosine base pair was studied when the substituents are connected to the guanine base through a phenyl ring. In this study, guanine was substituted in the H8 and H9 positions by electron donating (ED) and electron withdrawing (EW) groups mediated by a phenyl ring in the gas phase. The calculations were perf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 44 12  شماره 

صفحات  -

تاریخ انتشار 2005